Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Annals of the Rheumatic Diseases ; 82(Suppl 1):1622-1623, 2023.
Article in English | ProQuest Central | ID: covidwho-20241909

ABSTRACT

BackgroundAnti-synthetase syndrome (ASS) is a rare auto-immune condition that combines autoantibodies and specifics clinical manifestations, including myositis, interstitial lung disease (ILD), polyarthritis, mechanic's hands, Raynaud's phenomenon, and unexplained fever. The hallmark of this syndrome is the presence of anti-aminoacyl-tRNA-synthetase (ARS) antibodies. Several anti-ARS antibodies have been described, anti-Jo1 being the most common, followed by anti-PL7, anti-PL12, anti-OJ, anti-EJ, anti-KS, anti-YRS, and anti-Zo. According to a recent epidemiological survey, the rising number of patients with autoimmune diseases, including idiopathic inflammatory myopathies (IIM) coincides with the COVID-19 pandemic.ObjectivesTo evaluate the clinical characteristics of ASS patients with different anti-ARS antibodies from a tertiary rheumatology center.MethodsWe conducted a retrospective, single-centered study on consecutive patients diagnosed with ASS from 1 January 2015 to 31 December 2022. Clinical and serologic data were obtained by medical records review from hospital database. Myositis-specific antibodies (MSA) and myositis-associated antibodies (MAA) were tested using commercial ELISA kits. We included all patients fulfilling Connor's criteria for ASS.ResultsSixty-one patients (44 females) with mean age 54.4 (13.8) years were included. The most frequently reported clinical manifestation was arthralgia (68.8%), followed by Raynaud's phenomenon (67.2%), ILD (65.6%), myositis (46%), mechanic's hands (44.3%), arthritis (39.3%), and fever (18.0%). The typical triad for ASS, including myositis, arthritis and ILD was present in 17 patients. Twenty-eight (45.9%) patients were PL7+, 21 (34.4%) were Jo1+, 3 (4.9%) were PL12+, and 2 (3.2%) were OJ+. Seven patients were positive for more than two anti-ARS antibodies. The most frequently found MAA was anti-Ro52 (n=23, 37.7%). Of the 61 patients included, 41 (67.2%) patients were diagnosed in the last 3 years (COVID-19 pandemic). The most frequently detected MSA in ASS patients diagnosed during COVID-19 pandemic was anti-PL7 (25/28), while anti-Jo1 was the most common MSA in ASS patients diagnosed before 2020 (p<0.05) (Fig 1).The anti-Jo1+ patients were younger, have significantly more frequent muscle involvement and significantly higher levels of CK than anti-PL7+ patients (p<0.05). The co-occurance of anti-Ro52 antibodies was more frequently observed in anti-Jo1+ patients (n=11, 52.4%) than in anti-PL7+ patients (n=6, 21.4%) (p<0.05). We did not find statistically significant differences between ASS groups regarding sex, disease duration, clinical manifestations including dermatologic lesions, Raynaud's phenomenon, arthralgia/arthritis, ILD, fever, and cancers (all p>0.05).ConclusionASS patients have heterogenous manifestations, and different types of anti-ARS antibodies are associated to distinct clinical and immunological features. The COVID-19 pandemic led to increase prevalence of ASS cases and to a remarkable shift in the anti-ARS antibodies profile, with increased frequency of anti-PL7 antibodies. Further studies are needed to investigate the link between SARS-CoV-2 infections and myositis.References[1]Witt LJ, et al. The Diagnosis and Treatment of Antisynthetase Syndrome. Clin Pulm Med. 2016 Sep;23(5):218-226.[2]Gracia-Ramos AE, et al. New Onset of Autoimmune Diseases Following COVID-19 Diagnosis. Cells. 2021 Dec 20;10(12):3592.[3]Connors GR, et al. Interstitial lung disease associated with the idiopathic inflammatory myopathies: what progress has been made in the past 35 years? Chest. 2010 Dec;138(6):1464-74.[4]García-Bravo Let al. Association of anti-SARS-COV-2 vaccine with increased incidence of myositis-related anti-RNA-synthetases auto-antibodies. J Transl Autoimmun. 2022 Jun 30;5:100160.Figure 1.ASS patients with positive anti-ARS antibodies per year (from 2015 to 2022). The green line shows the PL7+ patients;and the orange line shows the Jo1+ cases.[Figure omitted. See PDF]AcknowledgementsI have no acknowledgements to declare.Disclosure of Inter stsNone Declared.

2.
Int J Rheum Dis ; 26(4): 781-785, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2304937

ABSTRACT

Anti-aminoacyl-transfer-RNA synthetase syndrome (ASS) related interstitial lung disease (ILD) is rarely presented initially alongside acute respiratory distress syndrome (ARDS), which in and of itself is a severe condition with a high mortality rate. Additionally, rapidly progressive change is not a common feature in ASS. Numerous case reports have described the efficacy which tofacitinib has on rapidly progressive ILD (RP-ILD). However, none have mentioned the use of tofacitinib in patients with impaired renal function. Herein, a case of ASS involving ILD is reported with the initial presentation of RP-ILD to ARDS being complicated by acute renal failure with an initial complete response to tofacitinib. Patients experiencing unexplained rapidly progressive interstitial pneumonia should be examined thoroughly for the diagnosis of ASS. Furthermore, tofacitinib can also be considered as a choice of treatment even in patients with impaired renal function.


Subject(s)
Amino Acyl-tRNA Synthetases , Glycine-tRNA Ligase , Lung Diseases, Interstitial , Myositis , Respiratory Distress Syndrome , Humans , Animals , Autoantibodies , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/complications , Respiratory Distress Syndrome/complications , Equidae
3.
Proc Natl Acad Sci U S A ; 120(8): e2219758120, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2241835

ABSTRACT

Synthetic biology tools for regulating gene expression have many useful biotechnology and therapeutic applications. Most tools developed for this purpose control gene expression at the level of transcription, and relatively few methods are available for regulating gene expression at the translational level. Here, we design and engineer split orthogonal aminoacyl-tRNA synthetases (o-aaRS) as unique tools to control gene translation in bacteria and mammalian cells. Using chemically induced dimerization domains, we developed split o-aaRSs that mediate gene expression by conditionally suppressing stop codons in the presence of the small molecules rapamycin and abscisic acid. By activating o-aaRSs, these molecular switches induce stop codon suppression, and in their absence stop codon suppression is turned off. We demonstrate, in Escherichia coli and in human cells, that split o-aaRSs function as genetically encoded AND gates where stop codon suppression is controlled by two distinct molecular inputs. In addition, we show that split o-aaRSs can be used as versatile biosensors to detect therapeutically relevant protein-protein interactions, including those involved in cancer, and those that mediate severe acute respiratory syndrome-coronavirus-2 infection.


Subject(s)
Amino Acyl-tRNA Synthetases , Codon, Terminator , Humans , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Ligases/metabolism , Protein Biosynthesis , RNA, Transfer/genetics , Escherichia coli
4.
Viruses ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2216911

ABSTRACT

tRNA-derived RNA fragments (tRFs) are a recently discovered family of small noncoding RNAs (sncRNAs). We previously reported that respiratory syncytial virus (RSV) infection induces functional tRFs, which are derived from a limited subset of parent tRNAs, in airway epithelial cells. Such induction is also observed in nasopharyngeal wash samples from RSV patients and correlates to RSV genome copies, suggesting a clinical significance of tRFs in RSV infection. This work also investigates whether the modification of parent tRNAs is changed by RSV to induce tRFs, using one of the most inducible tRFs as a model. We discovered that RSV infection changed the methylation modification of adenine at position 57 in tRNA glutamic acid, with a codon of CTC (tRNA-GluCTC), and the change is essential for its cleavage. AlkB homolog 1, a previously reported tRNA demethylase, appears to remove methyladenine from tRNA-GluCTC, prompting the subsequent production of tRFs from the 5'-end of tRNA-GluCTC, a regulator of RSV replication. This study demonstrates for the first time the importance of post-transcriptional modification of tRNAs in tRF biogenesis following RSV infection, providing critical insights for antiviral strategy development.


Subject(s)
RNA, Small Untranslated , Respiratory Syncytial Virus Infections , Humans , Respiratory Syncytial Virus Infections/genetics , RNA, Transfer/genetics , RNA, Small Untranslated/genetics , Epithelial Cells
5.
Pathogens ; 11(12)2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2200586

ABSTRACT

The COVID-19 pandemic revealed a need for new understanding of the mechanisms regulating host-pathogen interactions during viral infection. Transfer RNA-derived RNAs (tDRs), previously called transfer RNA fragments (tRFs), have recently emerged as potential regulators of viral pathogenesis. Many predictive studies using bioinformatic approaches have been conducted providing a repertoire of potential small RNA candidates for further analyses; however, few targets have been validated to directly bind to SARS-CoV-2 sequences. In this study, we used available data sets to identify host tDR expression altered in response to SARS-CoV-2 infection. RNA-interaction-prediction tools were used to identify sequences in the SARS-CoV-2 genome where tDRs could potentially bind. We then developed luciferase assays to confirm direct regulation through a predicted region of SARS-CoV-2 by tDRs. We found that two tDRs were downregulated in both clinical and in vitro cell culture studies of SARS-CoV-2 infection. Binding sites for these two tDRs were present in the 3' untranslated region (3'UTR) of the SARS-CoV-2 reference virus and both sites were altered in Variants of Concern (VOCs) that emerged later in the pandemic. These studies directly confirm the binding of human tDRs to a specific region of the 3'UTR of SARS-CoV-2 providing evidence for a novel mechanism for host-pathogen regulation.

6.
Front Cell Dev Biol ; 10: 999351, 2022.
Article in English | MEDLINE | ID: covidwho-2119667

ABSTRACT

Emerging and re-emerging respiratory viruses can spread rapidly and cause pandemics as demonstrated by the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The early human immune responses to respiratory viruses are in the nasal cavity and nasopharyngeal regions. Defining biomarkers of disease trajectory at the time of a positive diagnostic test would be an important tool to facilitate decisions such as initiation of antiviral treatment. We hypothesize that nasopharyngeal tRNA profiles could be used to predict Coronavirus Disease 19 (COVID-19) severity. We carried out multiplex small RNA sequencing (MSR-seq) on residual nasopharyngeal swabs to measure simultaneously full-length tRNA abundance, tRNA modifications, and tRNA fragmentation for the human tRNA response to SARS-CoV-2 infection. We identified distinct tRNA signatures associated with mild symptoms versus severe COVID-19 manifestations requiring hospitalization. These results highlight the utility of host tRNA properties as biomarkers for the clinical outcome of SARS-CoV-2.

7.
Genes Genomics ; 44(11): 1399-1404, 2022 11.
Article in English | MEDLINE | ID: covidwho-2048615

ABSTRACT

BACKGROUND: The question of whether the coronavirus genome contain as-yetununderstood genetic component. PURPOSE (OBJECTIVE): Elucidate the novel functions of the discovered tRNA-like base sequence and lead to the development of novel therapeutic agents. METHODS: A novel tRNA-like base sequence was found in the sequences complementary to the genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV. By comparing mutations in the tRNA-like base sequences of these two viruses, it was found that base pairing in the cloverleaf model of SARS-CoV-2 was more robust than that of SARS-CoV. RESULTS: The results of homology search between a short sequence of the coronavirus tRNA-like base sequence and human genes suggest that the molecule produced by this novel tRNA-like sequence may be involved in the splicing of human messenger RNA. CONCLUSIONS: Experimental molecular evidence of the tRNA-like base sequence discovered in this study is urgently needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Base Sequence , Genome, Viral , Humans , RNA, Messenger , RNA, Transfer/genetics , SARS-CoV-2/genetics
8.
Cureus ; 14(6): e26159, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1934585

ABSTRACT

This is a case of a 65-year-old female with a past medical history of type 2 diabetes mellitus (DM) and hypothyroidism who presented with a five-day history of shortness of breath, dry cough, and fatigue. Shortness of breath was exertional, and cough was intermittent. She had no exposure to COVID-19 infection. During the presentation, the patient required supplemental oxygen up to 6 liters per minute (L/m) and was tachypneic and tachycardic. Initial computed tomography (CT) of the chest revealed bilateral parenchymal disease compatible with COVID-19 pneumonia, however, the patient's COVID-19 polymerase chain reaction (PCR) test was persistently negative. Despite being treated for COVID-19 pneumonia, the patients' oxygen requirement increased, leading to the requirement of non-invasive positive pressure ventilation (BiPAP - bilevel positive airway pressure). The pulmonologist initiated a workup for possible underlying interstitial lung disease (ILD). Anti-glycyl transfer RNA (anti-EJ) antibody was positive on two occasions. The patient was started on pulse dose steroid and long-term steroid taper. The patient responded very well to the steroid and was later able to wean off the oxygen to room air. High-resolution CT which was done 3 months after the hospital stay revealed features suggestive of non-specific interstitial pneumonia (NSIP). Anti-synthetase syndrome is a rare but treatable etiology of ILD and should always be considered as a differential during workups.

9.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: covidwho-1892894

ABSTRACT

Respiratory syncytial virus (RSV) causes acute lower respiratory tract infection in infants, immunocompromised individuals and the elderly. As the only current specific treatment options for RSV are monoclonal antibodies, there is a need for efficacious antiviral treatments against RSV to be developed. We have previously shown that a group of synthetic non-coding single-stranded DNA oligonucleotides with lengths of 25-40 nucleotides can inhibit RSV infection in vitro and in vivo. Based on this, herein, we investigate whether naturally occurring single-stranded small non-coding RNA (sncRNA) fragments present in the airways have antiviral effects against RSV infection. From publicly available sequencing data, we selected sncRNA fragments such as YRNAs, tRNAs and rRNAs present in human bronchoalveolar lavage fluid (BALF) from healthy individuals. We utilized a GFP-expressing RSV to show that pre-treatment with the selected sncRNA fragments inhibited RSV infection in A549 cells in vitro. Furthermore, by using a flow cytometry-based binding assay, we demonstrate that these naturally occurring sncRNAs fragments inhibit viral infection most likely by binding to the RSV entry receptor nucleolin and thereby preventing the virus from binding to host cells, either directly or via steric hindrance. This finding highlights a new function of sncRNAs and displays the possibility of using naturally occurring sncRNAs as treatments against RSV.


Subject(s)
RNA, Small Untranslated , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , A549 Cells , Aged , Antiviral Agents/pharmacology , Humans , Infant , RNA, Small Untranslated/genetics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/genetics
10.
Viruses ; 14(3)2022 03 15.
Article in English | MEDLINE | ID: covidwho-1742734

ABSTRACT

Infectious diseases such as the ongoing coronavirus disease 2019 (COVID-19) continue to have a huge impact on global health, and the host-virus interaction remains incompletely understood. To address the global threat, in-depth investigations in pathogenesis are essential for interventions in infectious diseases and vaccine development. Interestingly, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs), an ancient enzyme family that was once considered to play housekeeping roles in protein synthesis, are involved in multiple viral infectious diseases. Many aaRSs in eukaryotes present as the components of a cytoplasmic depot system named the multi-synthetase complex (MSC). Upon viral infections, several components of the MSC are released and exert nonenzymatic activities. Host aaRSs can also be utilized to facilitate viral entry and replication. In addition to their intracellular roles, some aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are secreted as active cytokines or function as "molecule communicators" on the cell surface. The interactions between aaRSs and viruses ultimately affect host innate immune responses or facilitate virus invasion. In this review, we summarized the latest advances of the interactions between aaRSs and RNA viruses, with a particular emphasis on the therapeutic potentials of aaRSs in viral infectious diseases.


Subject(s)
Amino Acyl-tRNA Synthetases , COVID-19 , RNA Viruses , Virus Diseases , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Humans , RNA Viruses/genetics , RNA, Transfer/metabolism
11.
Front Physiol ; 12: 818297, 2021.
Article in English | MEDLINE | ID: covidwho-1706779

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in translation by linking amino acids onto their cognate tRNAs during protein synthesis. During evolution, aaRSs develop numerous non-canonical functions that expand the roles of aaRSs in eukaryotic organisms. Although aaRSs have been implicated in viral infection, the function of aaRSs during infections with coronaviruses (CoVs) remains unclear. Here, we analyzed the data from transcriptomic and proteomic database on human cytoplasmic (cyto) and mitochondrial (mt) aaRSs across infections with three highly pathogenic human CoVs, with a particular focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We found an overall downregulation of aaRSs at mRNA levels, while the protein levels of some mt-aaRSs and the phosphorylation of certain aaRSs were increased in response to SARS-CoV-2 infection. Strikingly, interaction network between SARS-CoV-2 and human aaRSs displayed a strong involvement of mt-aaRSs. Further co-immunoprecipitation (co-IP) experiments confirmed the physical interaction between SARS-CoV-2 M protein and TARS2. In addition, we identified the intermediate nodes and potential pathways involved in SARS-CoV-2 infection. This study provides an unbiased, overarching perspective on the correlation between aaRSs and SARS-CoV-2. More importantly, this work identifies TARS2, HARS2, and EARS2 as potential key factors involved in COVID-19.

12.
Front Cell Dev Biol ; 10: 768356, 2022.
Article in English | MEDLINE | ID: covidwho-1702459

ABSTRACT

Viruses package host RNAs in their virions which are associated with a range of functions in the viral life cycle. Previous transcriptomic profiling of host RNA packaging mostly focused on retroviruses. Which host RNAs are packaged in other viruses at the transcriptome level has not been thoroughly examined. Here we perform proof-of-concept studies using both small RNA and large RNA sequencing of six different SARS-CoV-2 viral isolates grown on VeroE6 cells to profile host RNAs present in cell free viral preparations and to explore SARS-CoV-2 genomic RNA modifications. We find selective enrichment of specific host transfer RNAs (tRNAs), tRNA fragments and signal recognition particle (SRP) RNA in SARS-CoV-2 viral preparations. Different viral preparations contain the same set of host RNAs, suggesting a common mechanism of packaging. We estimate that a single SARS-CoV-2 particle likely contains up to one SRP RNA and four tRNA molecules. We identify tRNA modification differences between the tRNAs present in viral preparations and those in the uninfected VeroE6 host cells. Furthermore, we find uncharacterized candidate modifications in the SARS-CoV-2 genomic RNA. Our results reveal an under-studied aspect of viral-host interactions that may be explored for viral therapeutics.

13.
Mol Ther Nucleic Acids ; 27: 751-762, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1586912

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a serious impact on the world. In this study, small RNAs from the blood of COVID-19 patients with moderate or severe symptoms were extracted for high-throughput sequencing and analysis. Interestingly, the levels of a special group of tRNA-derived small RNAs (tsRNAs) were found to be dramatically upregulated after SARS-CoV-2 infection, particularly in coronavirus disease 2019 (COVID-19) patients with severe symptoms. In particular, the 3'CCA tsRNAs from tRNA-Gly were highly consistent with the inflammation indicator C-reactive protein (CRP). In addition, we found that the majority of significantly changed microRNAs (miRNAs) were associated with endoplasmic reticulum (ER)/unfolded protein response (UPR) sensors, which may lead to the induction of proinflammatory cytokine and immune responses. This study found that SARS-CoV-2 infection caused significant changes in the levels of stress-associated small RNAs in patient blood and their potential functions. Our research revealed that the cells of COVID-19 patients undergo tremendous stress and respond, which can be reflected or regulated by small non-coding RNA (sncRNAs), thus providing potential thought for therapeutic intervention in COVID-19 by modulating small RNA levels or activities.

14.
Mol Ther Nucleic Acids ; 27: 718-732, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1586911

ABSTRACT

Drug discovery from plants usually focuses on small molecules rather than such biological macromolecules as RNAs. Although plant transfer RNA (tRNA)-derived fragment (tRF) has been associated with the developmental and defense mechanisms in plants, its regulatory role in mammals remains unclear. By employing a novel reverse small interfering RNA (siRNA) screening strategy, we show that a tRF mimic (antisense derived from the 5' end of tRNAHis(GUG) of Chinese yew) exhibits comparable anti-cancer activity with that of taxol on ovarian cancer A2780 cells, with a 16-fold lower dosage than that of taxol. A dual-luciferase reporter assay revealed that tRF-T11 directly targets the 3' UTR of oncogene TRPA1 mRNA. Furthermore, an Argonaute-RNA immunoprecipitation (AGO-RIP) assay demonstrated that tRF-T11 can interact with AGO2 to suppress TRPA1 via an RNAi pathway. This study uncovers a new role of plant-derived tRFs in regulating endogenous genes. This holds great promise for exploiting novel RNA drugs derived from nature and sheds light on the discovery of unknown molecular targets of therapeutics.

15.
J Alzheimers Dis Rep ; 5(1): 733-738, 2021.
Article in English | MEDLINE | ID: covidwho-1526752

ABSTRACT

The author discussed recently the possible molecular mechanisms that cause the COVID-19 disease symptoms. Here the analysis of the recent experimental data supports the hypothesis that production of the gut microbial tryptamine can be induced by the SARS-CoV-2 fecal viral activity due to the selective pressure or positive selection of tryptamine-producing microorganisms. In this report, the author suggests that the mechanism of microbial selection bases on the abilities of tryptamine to affect the viral nucleic acid. In other words, the gut microorganisms producing tryptamine are more resistant to SARS-CoV-2 fecal viral activity than microorganisms producing no tryptamine. Earlier we demonstrated the induction of neurodegeneration by tryptamine in human cells and mouse brain. Furthermore, we were able to uncover the human gut bacteria associated with Alzheimer's disease (AD) using PCR testing of human fecal samples with the new-designed primers targeting the tryptophan-tryptamine pathway. Likely, SARS-CoV-2 is one of the selective pressure factors in the cascade accelerating the neurodegenerative process in AD. This suggestion is consistent with a higher proportion of AD patients among COVID-19 related victims. Gut microbial tryptamine increase due to the viral infection-induced dysbiosis can synergize and potentiate the tryptamine cytotoxicity, necrotizing ability and other properties as a virulence factor.

16.
J Alzheimers Dis Rep ; 5(1): 571-600, 2021.
Article in English | MEDLINE | ID: covidwho-1405397

ABSTRACT

BACKGROUND: COVID-19 can be related to any diseases caused by microbial infection(s) because 1) co-infection with COVID-19-related virus and other microorganism(s) and 2) because metabolites produced by microorganisms such as bacteria, fungi, and protozoan can be involved in necrotizing pneumonia and other necrotizing medical conditions observed in COVID-19. OBJECTIVE: By way of illustration, the microbial metabolite of aromatic amino acid tryptophan, a biogenic amine tryptamine inducing neurodegeneration in cell and animal models, also induces necrosis. METHODS: This report includes analysis of COVID-19 positivity by zip codes in Florida and relation of the positivity to population density, possible effect of ecological and social factors on spread of COVID-19, autopsy analysis of COVID-19 cases from around the world, serum metabolomics analysis, and evaluation of autoantigenome related to COVID-19. RESULTS: In the present estimations, COVID-19 positivity percent per zip code population varied in Florida from 4.65% to 44.3% (February 2021 data). COVID-19 analysis is partially included in my book Microbial Metabolism and Disease (2021). The autoantigenome related to COVID-19 is characterized by alterations in protein biosynthesis proteins including aminoacyl-tRNA synthetases. Protein biosynthesis alteration is a feature of Alzheimer's disease. Serum metabolomics of COVID-19 positive patients show alteration in shikimate pathway metabolism, which is associated with the presence of Alzheimer's disease-associated human gut bacteria. CONCLUSION: Such alterations in microbial metabolism and protein biosynthesis can lead to toxicity and neurodegeneration as described earlier in my book Protein Biosynthesis Interference in Disease (2020).

17.
Mol Genet Genomics ; 296(1): 113-118, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1384446

ABSTRACT

To better understand the interaction between SARS-CoV-2 and human host and find potential ways to block the pandemic, one of the unresolved questions is that how the virus economically utilizes the resources of the hosts. Particularly, the tRNA pool has been adapted to the host genes. If the virus intends to translate its own RNA, then it has to compete with the abundant host mRNAs for the tRNA molecules. Translation initiation is the rate-limiting step during protein synthesis. The tRNAs carrying the initiation Methionine (iMet) recognize the start codon termed initiation ATG (iATG). Other normal Met-carrying tRNAs recognize the internal ATGs. The tAI of virus genes is significantly lower than the tAI of human genes. This disadvantage in translation elongation of viral RNAs must be compensated by more efficient initiation rates. In the human genome, the abundance of iMet-tRNAs to Met-tRNAs is five times higher than the iATG to ATG ratio. However, when SARS-CoV-2 infects human cells, the iMet has an 8.5-time enrichment to iATG. We collected 58 virus species and found that the enrichment of iMet is higher in all viruses compared to human. Our study indicates that the genome sequences of viruses like SARS-CoV-2 have the advantage of competing for the iMet-tRNAs with host mRNAs. The capture of iMet-tRNAs allows the fast translation initiation and the reproduction of virus itself, which compensates the lower tAI of viral genes. This might explain why the virus could rapidly translate its own RNA and reproduce itself from the sea of host mRNAs. Meanwhile, our study reminds the researchers not to ignore the mutations related to ATGs.


Subject(s)
Peptide Chain Initiation, Translational , RNA, Transfer, Met/metabolism , SARS-CoV-2/physiology , COVID-19/virology , Codon , Evolution, Molecular , Genome, Human , Host-Pathogen Interactions , Humans , Mutation , Protein Biosynthesis , SARS-CoV-2/genetics
18.
Theory Biosci ; 140(3): 241-247, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1265582

ABSTRACT

Analytical observations (in silico) indicate molecular features of SARS-Cov2 genome that potentially explains the high prevalence of asymptomatic cases in Covid-19 pandemic. We observed that the virus maintains a low preference for 'GGG' codon for glycine (3%) in its genome. We also observed multiple putative introns of 26-44 nucleotide (nt) length in the genomic region between the coding regions of Nsp10 and RPol in the viral ORF1ab, like several other beta-coronaviruses of similar infectivity levels. It appears that the virus employs a dual strategy to ensure unhindered replication within the host. One of the strategies employ a (- )1 frameshift translation event through programmed ribosomal slippage at the ribosomal slippage site in the ORF1ab. The alternate strategy relies on intron excision to generate a read through frame. The presence of 'GGG' in this conserved ribosomal slippage site ensures adequate tRNA in cytoplasm to match the codon, implying no additional frameshift translation due to ribosomal stalling. With fewer replication events, viral load remains low and resulting in asymptomatic cases. We suggest that this strategy is the primary reason for the prevalence of asymptomatic cases in the disease, enabling the virus to spread rapidly.


Subject(s)
COVID-19 , Humans , Pandemics , Prevalence , RNA, Viral , SARS-CoV-2 , Virus Replication
19.
Mol Cell ; 81(13): 2851-2867.e7, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1240514

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.


Subject(s)
COVID-19/metabolism , Proteome/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/physiology , Viral Proteins/metabolism , Virus Replication/physiology , A549 Cells , COVID-19/genetics , Humans , Proteome/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Viral Proteins/genetics
20.
Cell Rep ; 34(11): 108872, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1135279

ABSTRACT

Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines.


Subject(s)
Protein Biosynthesis/genetics , Virus Diseases/genetics , Viruses/genetics , Cell Line , Cell Line, Tumor , Codon Usage/genetics , Genes, Neoplasm/genetics , HCT116 Cells , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Pulmonary Alveoli/virology , RNA, Transfer/genetics , Respiratory Tract Infections/virology , Tropism/genetics , Viral Proteins/genetics , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL